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Interrelated processes of the transfer of heat, mass, and deformation of disperse systems with a prevailing
role of coagulation links in the structure are considered. The determining processes occurring during their
drying under ordinary conditions are singled out. The procedure for calculating large displacements and de-
formations on shrinkage of material during its drying has been developed. Basic rheological bodies are used
in calculations. The possibility of destruction of an elastic material is considered.

Introduction. When being dried, almost all materials are prone to deformation and cracking [1]. These are all
kinds of farm products, foodstuffs, building materials, rocks, textile fabrics, etc. However, as yet the study of deforma-
tion and cracking in the process of drying has been inadequate. Despite the fact that the necessity of accounting for
deformation in the process of drying was understood as soon as drying began to be used, its practical implementation
is connected with great difficulties of both experimental and theoretical nature. In experiments one faces problems as-
sociated with the technical feasibility of measuring deformations and stresses, the accuracy with which physical quan-
tities are measured, and with the reproduction of experimental data. Theoretical description entails allowance for
interrelated nonlinear physical phenomena, the necessity of solving complex systems of differential equations, and the
development of new numerical methods of calculation.

Drying is the interrelated process of heat and mass transfer and of the developing strain-stressed state of the
material. While the processes of heat- and mass transfer have been well studied (a vast literature is available, see [1–
8]), shrinkage and related stresses in capillary-porous colloid systems have been considered inadequately, and much
less attention is paid in scientific literature to this aspect. Therefore, the aim of the present investigation is the state-
ment of the problem of heat- and mass transfer with allowance for the deformation of the material and the stresses
appearing in it and the development of a method for its solution. Emphasis is put on the study of the processes of
material deformation as a constituent of drying on par with the processes of heat- and mass transfer.

General Ideas. In materials being dried, a great role is played by coagulations which are solid-phase particles
linked via thin water interlayers [9–12] which allow materials to deform strongly and change their shape without loss
of integrity in case they are subjected to external loading. Water in the material is a source of capillary forces and
disjoining pressures [2, 13, 14] which may attain high values in the process of its drying and lead to shrinkage, warp-
ing, cracking, and even destruction.

In the course of deformation of disperse systems, their structure undergoes a change caused by rearrangement
of particles, breakage of the former structural links between the latter, and formation of new ones. Precisely this capa-
bility of bodies is responsible for many of their rheological properties, including yielding. Thus, under insignificant
loadings on a material one can distinguish instantaneous elastic and slow deformations mainly proceeding with a
change in the volume of the pores and without breakage of the structure. A further increase in loading leads to a fur-
ther deformation of the skeleton structure and to breakage of interparticle links where they are most weak. Simultane-
ously, new links are being formed at other points of interparticle contacts. This is accompanied by the establishment
of a dynamic equilibrium between the breaking and recovering links. A further increase in loading upsets this equilib-
rium, i.e., the number of broken links starts to exceed those recovered. This causes the appearance of defects in a
body and an increase in loading on the remaining links. Subsequent increase in loading leads to the formation and
growth of cracks in the material and to its destruction.
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Theoretically, the deformation of a material and the change in its structure can be caused by gradients of tem-
perature, moisture content, or of total pressure. The interrelationship between the processes of transfer and structure
transformation is attributable to general causes: the dispersity of particles and the field of surface forces [2]. In the
course of heat- and mass transfer in disperse systems subjected to deformation there occurs a change in the mutual po-
sition of particles, number of contacts between them, average dimensions of pores, and in the curves of pore-radius
distribution, which makes the rate and mechanism of heat- and mass transfer processes dependent also on structure re-
arrangement. Consequently, there also occurs a change in the coefficients of transfer which become functions of both
temperature and moisture content, as well as of the rearranging structure of the disperse system.

Attempts have been made to justify and derive general equations of interrelated processes of heat- and mass
transfer and of deformation on the basis of the thermodynamics of irreversible processes [3, 15–21], in which it is as-
sumed that the fluxes of mass and heat and the rate of change in the filtrational pressure and deformation depend on
the gradients of moisture content, temperature, and total pressure in the material, as well as on the rate of its defor-
mation. Specific methods of derivation of these equations are cited in the references given. However, this single theory
cannot take into account the entirety of the occurring processes. Thus, the interrelationship of the above-indicated
fluxes is reflected not only via the corresponding gradients of fields, but also via the dependence of all the physical
coefficients (coefficients of heat conduction and diffusion, heat capacity, etc.) on temperature, moisture content, mate-
rial deformation, and, in particular, on the rearranging structure of a disperse system.

The practice of studying real, simultaneously occurring processes shows that all of the fluxes listed above are
never of the same order of magnitude. Depending on specific conditions, one can always single out a dominating phe-
nomenon which is more significant than the remaining ones.

The mechanics of continua is based on the equations of continuity, motion, and moment of momentum. In
order to close the system of equations that describes the behavior of a specific continuous medium, it is necessary to
know the rheological equation of the latter [22–28]. In the case of appreciable shrinkages and deformations of the ma-
terial it is already insufficient to use Hooke,s law, whereas for the systems we are considering the viscous and plastic
properties of the material can manifest themselves simultaneously with the elastic ones from the very beginning of the
process of loading. The complex character of the structures of disperse systems is responsible for their various and
complex rheological properties. However, it is known that the rheology of the material can be described on the basis
of three ideal bodies — the Hooke body, the Newton body, and the Saint Venant body — corresponding to which are
three fundamental properties: elasticity, viscosity, and plasticity. The rest of the rheological bodies are considered as
combinations of these three basic ones, and their properties are correspondingly a combination of the fundamental
ones. Therefore, real systems can be modeled with the aid of different combinations of ideal bodies. Hence it is logi-
cal to study the processes of heat- and mass transfer and deformation for the materials that possesses elasticity or vis-
coelasticity, or elastoplasticity. They can be used as a basis for investigating the processes of heat- and mass transfer
and deformation of materials of a more complex rheological behavior.

For disperse systems with a predominant role of coagulation links great shrinkages are typical. In contrast, for
example, to the thermal elasticity of metals, where thermal deformations of material are small and do not exceed a
percent of the initial size of a body, drying of bodies with coagulation structures can cause changes in size which can
amount not to percentages but rather to severalfold. The description of large displacements of elements and deforma-
tion of a body requires the development of new computing methods. Application of the Euler method to study me-
chanical motion is unjustifiable; one has to use the Lagrange method and take into account the geometrical
nonlinearity of the problem. Consequently, it is impossible in principle to solve such problems analytically. In our
opinion, the reduction of the problem to a geometrically linear one, i.e., to small deformations in a system, is transi-
tion to another problem rather than the simplification of the one considered. Moreover, the problem is nonlinear also
by virtue of the dependence of physical characteristics on the moisture content, temperature, and deformations of ma-
terial. Its solution is complicated by the necessity of taking into account the interrelationship between the unknown
quantities. However, due to the development of numerical methods and computational technique, it becomes possible
to solve nonlinear interrelated problems of drying that account for large deformations of material.

Thus, the aim of the present investigation is the singling out of the main specific features of the problem con-
sidered and development of the technique of its solution, and thereby the generalization of the theory of drying to the
case of large displacements and deformations in a material.
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Statement of the Problem. As noted above, drying consists of interrelated processes of transfer of heat, mass,
and of total pressure in the material and of its deformation. However, because of the absence of a flux of moisture,
drying becomes impossible, whereas it can take place also at constant temperature and at constant pressure or at their
small gradients, so that mass transfer due to them can be neglected. Consequently, the first process which should be
taken into account is moisture transfer. In the overwhelming majority of disperse systems with coagulation links
shrinkage occurs if the systems are left to their own devices or there appear stresses if their shape and volume cannot
be changed. Therefore, the second process which should be considered is deformation of material and the associated
stressed state. All the remaining processes can be present depending on the specific conditions of drying.

The study of drying accompanied by deformation has shown that the mutual influence of heat- and mass
transfer and of deformed-stressed state of material manifests itself only in the case of a very unsteady heat- and mass
exchange with the environment. Only in such a case should one take into account inertial forces. In ordinary processes
of drying, the fields of temperature, moisture content, and of total pressure change slowly, and the material has time
to respond to their changes, so that with satisfactory accuracy one can assume that the body is in static equilibrium
all the time. In ordinary drying of disperse systems their deformed-stressed states weakly influence changes in tempera-
ture, moisture content, and in total pressure. This is also confirmed by the calculations made in [29]. Therefore, in the
equations of heat conduction, mass transfer, and of a change in total pressure one can neglect the terms that describe
the deformed-stressed state of material, whereas in equations of mechanical motion one can omit inertia terms. More-
over, thermal deformations and the deformations caused by the total pressure in the material can be neglected in com-
parison with the shrinkages caused by dehydration. We clarify that by ordinary drying we understand convective
drying at a temperature below 100oC, relative air humidity lower than 100%, and velocity of motion of the drying
agent of up to 7 m/sec.

With allowance for the basic effects studied and without loss of generality we may consider the following
statement of the problem. Mass transfer occurs under isothermal conditions. On the upper boundary Newton-law mass
transfer is prescribed and on the remaining ones moisture insulation from the environment is assumed. We shall re-
strict ourselves to a simple uncoupled moisture-stressed problem in which the influence of mechanical motion on mass
transfer is not taken into account. In the process of drying, at each time instant a body is in mechanical equilibrium,
which allows one to investigate a static problem of moisture elasticity. We will also consider a two-dimensional prob-
lem under the conditions of a plane stressed state. We assume that the rheological and mass-transfer coefficients do
not depend on the moisture content of the material. In the present work, we will study an elastic, an elastoviscous, and
an elastoplastic bodies, as well as an elastic body with a possibility of cracking.

We note that allowance for the dependence of the above-mentioned coefficients on the sought-for quantities
can be made within the framework of the procedure we are developing, since the solutions of such nonlinear problems
have been well described. In our opinion, the generalization of the problem to the case of interrelated heat- and mass
transfer involves no fundamental difficulties, since the equations of heat conduction and of total pressure have the
same structure as the mass conduction equation.

Thus, the model considered takes into account all the necessary properties and at the same time is so simple
that it allows one to develop the fundamental notions of the computing method suggested.

Solution Procedure. The equations of mechanical motion of an elastic material in Lagrangian curvilinear co-
ordinates in a linear approximation are given in [30]. It is seen that they are cumbersome and are hardly solvable ana-
lytically. With allowance for the nonlinear components in the expressions for the tensor of deformations new terms are
added to those already available in the equations of motion. Due to this, the system studied becomes more complicated
and less comprehensible. The solution of such equations by the grid method is possible, but it is very laborious be-
cause of the necessity to take into account the deformability of the computational grid and the change in the shape of
the material boundaries, and the development of the techniques that allow one to preserve the needed accuracy of cal-
culation.

In the present work, to determine large displacements and deformations a finite-element method is used. We
will write variational formulations for the processes of motion and mass transfer as follows [31, 32]:

δ ∫ 
V

1
2

 σijεij − σijε0ij

 dV = 0 , (1)
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The general procedure of their solution is given in [30]. Its main stages are: by selecting a time step ∆t small enough
that the moisture-gradient caused displacements can be considered insignificant, we obtain the distribution W from Eq.
(2) and then from Eq. (1) we find the displacements of nodal points which correspond to equilibrium for a new dis-
tribution of moisture. On the basis of the displacements obtained we calculate new values of the coordinates of the
nodes of elements, and this gives a new equilibrium deformed state of the material. Taking the resulting state of the
material as the initial one, we repeat the calculation on the next step.

The system of algebraic equations was constructed on the basis of the procedure presented in [31, 32]. The
general scheme of solution is based on finding the displacements of the nodes of elements on each step. For this pur-
pose, it is necessary to use the dependence 



σ


 = f(


ε

) in Eq. (1) for various rheological bodies to exclude σij.

The rheology of the material which obeys Hooke,s law will be expressed by the well-known equation

σij = 
νE

(1 + ν) (1 − 2ν)
 εkkδij + 

E
1 + ν

 εij . (3)

Many viscous properties of disperse systems are satisfactorily described by the model of a standard linear elastoviscous
body which consists of successively connected Hookean and Kelvin bodies [25, 33, 34]. In [35], a general equation
for the dependence of the stress tensor on the deformation tensor is obtained when a material dried is under the con-
ditions of a complex stressed state, as for example, in the case of drying:

σij (t) = 2G0 

εij (t) − 

1
3

 δijθ (t)

 + δijBθ (t) − 2G0 ∫ 

0

t

Rs (t − τ) 

εij (τ) − 

1
3

 δijθ (τ)

 dτ . (4)

Here, Rs(t − τ) = 
G0 − G∞

G0tr
 exp 




− 

t − τ
tr




 , θ = ε11 + ε22 + ε33.

To describe the plasticity of the material, the theory of Prandtl–Reiss plastic flow and Mises yielding condi-
tion [36, 37] were used:

deij = sijdλ + 
dsij

2G
 ,  dλ = 

3

2
 
dεpl
____

σ
__  = 

3

2
 
dσ
__

σ
__

H
 ,   dεpl

____
 = √3

2
 dεij

pl
 dεij

pl
 ,   H = 

dσ
__

dεpl
____ , (5)

σ
__

 = √32 sijsij  . (6)

As is known [36, 37], for a plastic material one cannot write finite relations between the stress and deforma-
tion tensors; however, one can obtain relationship between their differentials. Their derivation on the basis of Eqs. (5)
and (6) is presented in [38]. We will present here only the finite relationship between the differentials of the stress
and strain tensors:

dσij = 
E

2 (1 + ν)
 



dεij + 

ν
1 − 2ν

 δijdεij − sij 
skldεkl

S




 ,   S = 

2

3
 σ
__ 2

 



1 + 

2 (1 + ν) H
3E




 . (7)

Now, we will present relationships between the stress and strain vectors 

σ


 = f(


ε

). For an elastic material, in

the case of a plane stressed state with account for the dependence of the stress tensor on the moisture content of the
material we have
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 . (9)

Here, ε0ij = βv(W − W0)δij is the deformation caused by the difference of moisture contents; W0 is the moisture content
at the initial instant of time t0 (the initial moisture content of the material).

For a viscoelastic material, in the case of a plane stressed state, we may write the following equation which
relates the stress and strain tensors and which was derived in [35]:




σ


 = [D] 


ε

 − [D] 


ε0




 + 


r

 . (10)

Here, the matrix [D] is given by Eq. (9), and the components of the vector 

r



 have the form

r1 = − ∫ 
0

t

Rs (t − τ) 




(2 − ν) E
3 (1 − ν2)

 ε11 (τ) − 
(1 − 2ν) E

3 (1 − ν2)
 ε22 (τ)


 dτ , (11)

r2 = − ∫ 
0

t

Rs (t − τ) 




(2 − ν) E
3 (1 − ν2)

 ε22 (τ) − 
(2 − ν) E

3 (1 − ν2)
 ε11 (τ)


 dτ , (12)

r3 = − 
E

2 (1 + ν)
 ∫ 
0

t

Rs (t − τ) ε21 (τ) dτ . (13)

For an unstrengthened elastoplastic body in the case of a plane stressed state on the basis of the results of
[38] the equation for the differential of the stress tensor has a form similar to that of relation (8) for an elastic body,
in which the quantities σ and ε should be replaced by their differentials dσ and dε. However, for plastic elements the
matrix [D] should be replaced by the matrix [Dpl] which follows from Eq. (7) and which was derived in [38]:


D

pl
 = ϕ 

E
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syy
2

 + 2P              − sxxsyy + 2νP        − 
sxx + νsyy

1 + ν
 σxy

− sxxsyy + 2νP      syy
2

 + 2P              − 
syy + νsxx

1 + ν
 sxy

− 
sxx + νsyy

1 + ν
 sxy     − 

syy + νsxx

1 + ν
 sxy      

R

2 (1 + ν)















 , (14)

where P = σxy
2 /(1 + ν); R = sxx

2  + 2νsxxsyy + syy
2 ; Q = R + 2(1 − ν2)P; ϕ is a specific quantity assumed to be equal to

unity for a plastic material.
We have also considered the model of an elastically destroyed material which was constructed on the

basis of Eq. (8) using the matrices [D] and [Dpl], but sinse the elements on which destruction occurred cannot in-
fluence the entire process of deformation, the quantity ϕ in Eq. (14) was assumed rather small (in our case, it was
equal to 0.001).
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The body investigated was split into two-dimensional simplex-elements, which made it possible to use linear
interpolation polynomials in solving the problem. The components of the vector of displacements through their nodal
values 


U



 will be written as follows:



u



 = [N] U



 . (15)

The strain vector 

ε

 is related to nodal displacements 


U



 by the expression




ε

 = [B] U



 . (16)

For an elastic material the substitution of Eq. (8) into Eq. (1) allows us to exclude the stress tensor form the
variational formulation. Then, by applying Eq. (16) to the expression obtained and performing differentiation with re-
spect to 


U



 and thereafter integration over V, we finally obtain a system of algebraic equations of the form [30]

[K] 

U



 = 


F


 − [K] 


U0




 . (17)

Here,

[K] = ∑ 

e=1
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K

e
 ; (18)
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 = ∑ 

e=1
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F

e
 ; (19)


K

e
 = B

e

 t
 D

e
 

B

e
 S

e
h ; (20)




F

e


 = B

e

 t
 D

e
 



ε0

e


 S

e
h . (21)

Using Eq. (10) and performing the same operations as for the elastic body, we obtain a system of algebraic
equations for an elastoviscous material [35]:

[K] 

U



 = 


F


 − [K] 


U0




 + 


R


 . (22)

The meaning of the first two terms on the right is the same as before, whereas the third term takes into account the
hereditary properties of the material and has the form



R



 = ∑ 

e=1

N


R

e
 , (23)




R

e


 = 

1
2

 B
e

 t
 


ρ

e

 S

e
h . (24)

Here, the components of the vector 

ρ


 can be found from expressions (11)–(13) for the components of the vector 


r



:

ρ1 = ∑ 

i=1

M−1

Rs (t − τi) 




(2 − ν) E

3 (1 − ν2)
 ε11 (τi) − 

(1 − 2ν) E

3 (1 − ν2)
 ε22 (τi)




 ∆τi , (25)
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ρ2 = ∑ 

i=1

M−1

Rs (t − τi) 




(2 − ν) E

3 (1 − ν2)
 ε22 (τi) − 

(1 − 2ν) E
3 (1 − ν2)

 ε11 (τi)



 ∆τi , (26)

ρ3 = 
(2 − ν) E

3 (1 − ν2)
 ∑ 

i=1

M−1

Rs (t − τi) ε21 (τi) ∆τi . (27)

We note that 

ρ


 is calculated each time at a new step, since the number of steps in time M increases as the

calculation proceeds. It is recalculated, first, because new terms are added into the sums of Eqs. (25)–(27) and addi-
tional new quantities τi, ε11(τi), ε22(τi), and ε21(τi) are introduced and, second, because the function Rs(t − τi) depends
on t, and therefore, it should be calculated anew at each step.

For an elastoplastic material the system of algebraic equations will have the following form suggested by the
author in [39]:

[K] 



U



 = 




F



 − [K] 




U0




 + 




F

 pl


 ,

(28)

[K
 epl

] = [B
e
]
 t
 [D

epl
] [B

e
] S

e
h , (29)



F

 pl
 = ∑ 

e=1

N

 


F

 epl
 , (30)



F

 epl
 = [B

e
]
 t
 [D

e
] 


ε

epl

 S

e
h . (31)

In deriving Eqs. (28)–(31) it should be kept in mind that in Eq. (16) ε should be replaced by dε. This is admissible,
since according to the general procedure, at each time step ∆t the displacements are small.

In the case of an elastoplastic behavior of a material, the algorithm of calculations is somewhat more com-
plex. In calculations the Mises condition is used:

σ
__

 = σy.p , (32)

where σ
__

 = √σxx
2  + σyy

2  − σxxσyy + 3σxy2 ; σy.p is the extension yield point; σxx, σyy, and σxy are the components of the
stress tensor.

At the initial instant of time and as long as the moisture gradient in the material is not high, stresses in it are
also low, and the intensity of the stress deviator σ

__
 does not exceed the yield point σy.p. The body behaves as an elas-

tic one, and the local matrix of rigidity is calculated from Eq. (20). But when stresses in the material increase to such
an extent that the intensity of the stresses of deviator σ

__
 on the element becomes higher than the yield point σy.p, the

element is to be considered plastic, and in this case calculation of the rigidity matrix is performed from Eq. (29). Then
the rigidity matrix of the entire material [K] is formed on the basis of the matrices [Ke] and [Kepl]. In the computa-
tional program we pass to the plastic state of the element if σ

__
 is in the range of values σy.p % 0.01σy.p. The magnitude

of the increments of stresses in the material was controlled by a step in time dt. The step was selected so that the
increment ∆σ

__
 cannot exceed 0.02σy.p. When σ

__
 occurs in the range indicated, we make a correction of the components

of elastic stresses. For this purpose, we calculate the value of the ratio r = σy.p
 ⁄ σ
__

 and then multiply it by the com-
ponents σxx, σyy, and σxy. Based on the products obtained we calculate the matrix [Dpl] for plastic elements. We also
note that at the stage of loading, i.e., when stresses in the material increase, the term 



F

 pl
 in Eq. (28) is not used.

As the element had passed into the plastic region, elastic deformations were fixed, and the plastic deforma-
tions were calculated from the formula
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εij
pl

 = εij
tot

 − εij
el (33)

(where εij
tot, εij

el, and εij
pl are the total, elastic, and plastic deformations of the element) until there occurred unloading

on the element and it returned to the elastic region. As the condition of transition from the plastic region to the elastic
one, we adopt the state in which the entire deformation εij

tot obtainable by calculation becomes equal to the elastic de-
formation εij

el formed at the yield point. In this case, plastic deformations were preserved on the element, as a result
of which the elements that were in a plastic state had a larger dried area at the end of drying than elements which
remained in another region all the time. At this stage (the stage of unloading) the term 



F

 pl
 was taken into account

in Eq. (28).
In the case of an elastic material capable of destruction the algorithm of calculation is somewhat different; it

was suggested by the author in [40]. For a two-dimensional plane stressed state the Mises rigidity condition has the
form

σ
__

 = σu.s , (34)

where σu.s is the extension ultimate strength. The difference of this procedure from the procedure for an elastoplastic
material is that the unloading stage drops out, since the elements that underwent destruction are not recovered. There-
fore, for an elastic body it is sufficient to use the system of equations (17).

The main stages of computation proceed as follows. At the initial instant of time and as long as the moisture
gradient in the material is not high, the stresses in it are also low, and the intensity of the stress deviator σ

__
 does not

exceed the ultimate strength σu.s. The body behaves as an elastic one, and the rigidity matrix is calculated from Eq.
(20). But when the stresses in the material increase so that the intensity of stress deviator σ

__
 on the element exceeds

the ultimate strength σu.s, the element can be considered destroyed, and in this case calculations of the rigidity matrix
is made from Eq. (29), where in calculating [Dpl] we assume that ϕ = 0.001. In the program we pass to the destruc-
tion of the element when σ

__
 is in the range σu.s % 0.01σu.s. The value of the increment of stresses in the material was

controlled by the step in time dt. It was selected so that ∆σ
__

 could not exceed 0.02σu.s.
The method of calculation of mass transfer from Eq. (2) was borrowed from [31, 32]. In conclusion we note

that both [Be] and Se are calculated in terms of the coordinates of the nodes of the element; consequently, neither [K]
nor 


F



 remains constant and they are determined at each time step. The recalculations of the rigidity matrix and col-

umn-vector of loading is made also in determining the humidity field.
The procedure suggested makes it possible to study large displacements and deformations of a body during its

drying using simple rheological properties of disperse materials; it can be used in developing the techniques of their
calculation for bodies with a more complex rheology and heat- and mass transfer processes.

Discussion of Results. Two cases were studied: deformation of a material in the process of drying with a free
lower boundary and with a limited possibility of motion of the lower boundary. In its initial state the material has the
moisture content W0 = 1 kg/kg; an equilibrium moisture content Weq = 0 kg/kg is prescribed on the surface. The co-
efficient of moisture conductivity was adopted equal to aw = 3⋅10−9 m2/sec, the mass transfer coefficient to αw =
3⋅10−6 m/sec, the elasticity modulus to E = 3⋅107 Pa, the Poisson coefficient to ν = 0.5, and the coefficient of linear
shrinkage of the material to β = 0.5.

In [30], visual information on the behavior of an elastic body in drying is given. As the material is being
dried, the gradient of moisture content appears in it which grows in the direction from the upper boundary to the
lower one. This growth is accompanied by increasing inadmissible shrinkage of the body and, consequently, of the
stress. The material alters its shape because of the curtailment of the dimensions due to the decrease in the moisture
content and to the stresses appearing in it. A maximum change in the shape occurs with a maximum formation of
moisture gradient over the height of a sample. In the process of drying, when the gradient of moisture content in the
material becomes smaller, the stresses decrease, tending to zero at the end of drying, and the body regains the initial
shape but of smaller dimensions, corresponding to the new value of moisture content. Moreover, no residual deforma-
tions and stresses remain at the end of drying.

Maximum values of stresses σxx appear on the upper and lower boundaries, and they decrease as the central
plane of the body parallel to the axis x is approached. But if we fix a certain plane parallel to this axis, then the
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maximum value of σxx is attained at the center of the material, and it drops to zero on the side boundaries of the
body. The quantity σyy has a maximum at the center of the side boundary planes and decreases at their edges. The
component σxy is equal to zero on the central and side surfaces of the material, taking maximum values in the plane
between the central portion of the material and its side surfaces.

Calculation shows that in a body with a moving lower boundary, stresses smaller in absolute magnitude are
developed than those in the sample in which the lower boundary cannot move in the vertical direction. This is ex-
plained by the fact that free deformation partially relieves the unaccounted shrinkage caused by the moisture gradient.

The study of a material with elastoviscous rheology (additionally it was adopted that the relaxation time tr =
3600 sec and the Poisson coefficient ν = 0.35) shows that its behavior resembles deformation of a purely elastic body
(see above). We will consider in more detail the characteristic features of elastoviscous deformation. The stresses
formed in an elastoviscous material are smaller than those formed in a purely elastic one. This is due to the presence
of viscous properties of the medium, which leads to a greater mobility of its structure and, consequently, to the re-
moval of a portion of stresses in it. Visual observation of the process of deformation showed that at the end of drying
the body that initially had a rectangular shape regains this shape, and at the end of drying the stresses disappear from
it, i.e., no residual deformations and stresses are formed. This is explained by the fact that the process of drying oc-
curs in two stages. In the first stage, on increase in the moisture content gradient the material is loaded and viscous
and elastic deformations are formed in it, and in the second stage, when the moisture content gradient decreases, the
material is unloaded and simultaneously both elastic and viscous deformations decrease, and they disappear by the end
of drying. We note that elastic deformations disappear as a result of the drop in the moisture content gradient, whereas
the viscous ones — due to the process of relaxation that closely follows the decrease in the moisture content gradient.
Whence the conclusion can be drawn that on completion of drying the elastoviscous deformations do not lead to the
appearance of residual deformations, even temporal ones.

Based on the procedure developed, we calculated the process of drying of an isotropic elastoviscous material
with the characteristics given above, as well as with the Poisson coefficient ν = 0.5 and the value for the yield point
σy.p = 3⋅106 Pa. We considered a material with a limited possibility of motion for its lower boundary in the process
of drying.

The maximum extending stresses in drying appear on the upper side of the material, whereas maximal com-
pressing ones are realized on the lower side. On increase in the yield point, some of the elements pass into a plastic
state and thus fix stresses on the upper side, preventing their increase. The stresses, however, continue to increase on
the underlying layers. If the yield point is also exceeded on them, a portion of the elements will pass into a plastic
state. The process will continue until the moisture content gradient in the material begins to decrease followed by a
decrease in stresses, and all the elements again pass into the elastic region. Plastic deformations lead to a situation
where the elements subjected to them will shrink less than the elements that did not undergo such deformations. As

Fig. 1. States of materials at the end of drying: elastoplastic (a) and elastic (b)
rheological bodies.
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the body is dried up further, the extending stresses in the upper layers will decrease, passing through zero value, and
then they will go over into compressing ones. In the lower layers the reverse picture is observed, as a result of which
they are subjected to extending stresses. As a result, the upper layers will be compressed by the lower ones and the
latter will be extended by the upper ones. On complete drying of the material the residual stresses will take maximum
values. Figure 1 demonstrates the states of the materials at the end of the process of drying with elastoplastic and elas-
tic properties, respectively. It is seen from this figure that the elastoplastic material, in contrast to elastic one (and elas-
toviscous one), failed to regain the initial shape. The results obtained agree with the data given in [41, 42].

Based on the procedure developed, calculations of the process of drying of an isotropic elastic disperse me-
dium with the possibility of its destruction have been made. A material with a limited possibility of motion of the
lower boundary in the process of drying for the ultimate strength σu.s = 4⋅106 Pa was considered. Figure 2 presents
an example of calculation at different time instants. The points denote the elements at which a break in continuity oc-
currs. The discontinuity begins on the upper boundary and propagates inward. In this case the crack becomes wider,
which leads to the redistribution of the load in the material. As dehydration proceeds and the moisture content gradient
falls the material regains its initial shape and the crack closes up.

Conclusions. It is shown that for both more accurate calculations and development of the theory of drying the
system of interrelated equations of heat and mass transfer must also include equations of mechanical motion. Basic proc-
esses responsible for the drying of materials liable to deformation are singled out. A procedure of numerical calculation
of the drying of bodies with large displacements of its elements and deformations has been developed. Based on the
proposed procedure, the processes of drying for the basic rheological models, elastic, elastoviscous, and elastoplastic,
have been calculated. The procedure developed allows one also initiate the process of destruction of elastic materials.

NOTATION

aw, moisture conduction (diffusion) coefficient, m2/sec; B, bulk compression modulus, Pa; [B], matrix of gra-
dients; [D], matrix of the characteristics of a material; E, modulus of elasticity, Pa; eij, deviator of deformations; 


F



,

Fig. 2. Material with cracks at different instants of time t: a) 9020; b) 38,620;
c) 106,620; and d) 301,020 sec.
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global vector-column of loading; G, shear modulus, Pa; G0 and G∞, instantaneous and extremely long shear moduli,
Pa; h, thickness of material, m; [K], global stiffness matrix; [Ke], [Kepl], local stiffness matrices; M, number of steps
in time; N, number of elements; [N], matrix of shape functions; Rs(t) and Rv(t), functions of the rates of shear and
bulk relaxations; 


R



, 



r



, vectors taking into account the hereditary properties of the material; S, area, m2; sij, stress de-

viator, Pa; T, temperature, K; t, time, sec; ∆t, step in time, sec; tr, time of relaxation, sec; 

U



, vector of nodal dis-

placements; 

u



, vector of displacements; V, volume, m3; W, moisture content, kg/kg; Weq, equilibrium moisture

content; kg/kg; x, y, coordinates, m; αw, mass transfer coefficient, m/sec; βv, coefficient of volume shrinkage; γ, shear
deformation; δ, symbol of mathematical operation of variation; δij, Kronecker symbol; 



ε

, strain vector; εij, strain

tensor; ν, Poisson coefficient; σij, stress tensor, Pa; σ
__

, intensity of stress deviator, Pa; 


σ


, stress vector; τ, integration

variable, sec. Subscripts and superscripts: 0, initial; v, volumetric (bulk); y.p, extension yield point; e, number of ele-
ment; t, transposed; eq, equilibrium; w, moisture (water); tot, total deformation; el, elastic; pl, plastic; u.s, extension
ultimate strength; s, shearing; i, j, k, tensor components and running values of terms being summed up; r, relaxation.
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